Weighted Laplacians and the Sigma Function of a Graph

نویسندگان

  • Fan Chung
  • Ross M. Richardson
چکیده

We consider a general notion of the Laplacian of a graph. The weight of an edge reflects both the width and the length of an edge. Further, we allow the edge weights to vary in order to minimize the maximum eigenvalue, and using this minimum we construct the so-called σ−function of a graph. We consider a geometric interpretation of the σ−function, in particular as it applies to the detection of certain extremal configurations. Of special interest are σ−critical subgraphs. We derive several results about σ−critical graphs as well as offering conjectures about their structure. These results are related to applications in graph drawing algorithms and clique detection problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Ordered Random Walks and Generalized Laplacians on Hypergraphs

Despite of the extreme success of the spectral graph theory, there are relatively few papers applying spectral analysis to hypergraphs. Chung first introduced Laplacians for regular hypergraphs and showed some useful applications. Other researchers treated hypergraphs as weighted graphs and then studied the Laplacians of the corresponding weighted graphs. In this paper, we aim to unify these ve...

متن کامل

Edge pair sum labeling of spider graph

An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...

متن کامل

New skew equienergetic oriented graphs

Let $S(G^{sigma})$ be the skew-adjacency matrix of the oriented graph $G^{sigma}$, which is obtained from a simple undirected graph $G$ by assigning an orientation $sigma$ to each of its edges. The skew energy of an oriented graph $G^{sigma}$ is defined as the sum of absolute values of all eigenvalues of $S(G^{sigma})$. Two oriented graphs are said to be skew equienergetic iftheir skew energies...

متن کامل

Weighted Graph Laplacians and Isoperimetric Inequalities

We consider a weighted Cheeger’s constant for a graph and we examine the gap between the first two eigenvalues of Laplacian. We establish several isoperimetric inequalities concerning the unweighted Cheeger’s constant, weighted Cheeger’s constants and eigenvalues for Neumann and Dirichlet conditions .

متن کامل

Compact weighted Frobenius-Perron operators and their spectra

In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006